

 Embedded Makersהילת האקדמיה של ק

 מציגות: John Bryce מכללתבשיתוף

LinuxEmbedded
Online Course | 40 Hours

2

 Overview

This course provides embedded systems developers, making their first steps with Linux
as an embedded system platform, with the skills required for being a productive
programmer in that environment. The curriculum includes building applications and
device drivers with real time constraints, understanding the inner working of the Linux
system and its effects the system behavior.
The course is suitable for people planning to develop for embedded Linux platforms
from any source, including “homemade” Linux distributions or embedded Linux system
vendors

 On Completion Delegates will be able to

Create applications and device drivers for Embedded Linux environments, or to import
such applications from systems using legacy RTOSes.

 Who Should Attend?

Seasoned embedded systems developers wishing to become competent Linux
Embedded systems developers.

 Prerequisites

Delegates should have a working knowledge with C programming language and basic
knowledge with embedded systems

Course Contents

Introduction
 What is Linux
 Layers in a Linux system
 Linux vs. Legacy RTOS

Basic concepts

 Files and file system
 The shell
 Basic commands
 Processes
 Setting up networking

3

Application programming and the user space API

 Make files and the build environment
 Processes and threads
 Real time priorities

Application programming and the user space API
 Synchronization and IPC (mutex, condition variables, mailboxes, pipes, shared

memory, Unix domain sockets and signals)
 Timers
 Memory mapping and locking
 Debugging applications: in process and using remote debugger
 Labs – using pipes, debugging

Linux Kernel

 Kernel overview
 History
 Versions
 Source code layout
 Good practices
 System call interface

Writing a simple kernel module

 A simple kernel module structure
 Implicit steps of compiling modules in Linux kernel version 2.6
 Using shell commands to manipulate modules
 The kernel logs
 Using the printk function
 Passing parameters to the module

Memory Management

 Memory areas
 Memory page frames
 Requesting and releasing page frames
 Allocating contiguous virtual memory area
 The slab and slob allocators
 Memory caches and allocations
 Managing slabs
 Creating and destroying caches
 User space memory access

4

Implementing a character device file
 The VFS structure
 Initialization and termination
 Opening the device file
 IOCTL
 Implementing base operations

Debugging

 Kernel configuration for debugging
 printk
 KGDB
 Oops messages

Locking mechanisms

 Locking requirements
 Preemption
 Atomic bit operations
 Interrupt disabling
 Spin lock
 Semaphores

Linux Scheduler

 Process and thread
 Scheduling policies
 Priorities
 Kernel tasks
 task_struct structure
 SMP scheduling

Interrupt handling

 Hardware interrupt handling basics
 Interrupt handler and control
 Low level handling
 Wait queues technique
 Threaded interrupts

 Bottom halves

 Differing work
 Using software interrupts
 Tasklets
 Timers & RTC
 Work queues

5

Network sub system overview

 The layer model
 Registration and un-registration
 Socket buffers, allocations and manipulations
 Network headers
 Packet reception
 Packet transmission
 NAPI

6

Introduction
 What is Linux
 Layers in a Linux system
 Linux vs. Legacy RTOS

Basic concepts

