

 Embedded Makersהילת האקדמיה של ק

 מציגות: John Bryce מכללתבשיתוף

LinuxEmbedded
Online Course | 40 Hours

2

 Overview

This course provides embedded systems developers, making their first steps with Linux
as an embedded system platform, with the skills required for being a productive
programmer in that environment. The curriculum includes building applications and
device drivers with real time constraints, understanding the inner working of the Linux
system and its effects the system behavior.
The course is suitable for people planning to develop for embedded Linux platforms
from any source, including “homemade” Linux distributions or embedded Linux system
vendors

 On Completion Delegates will be able to

Create applications and device drivers for Embedded Linux environments, or to import
such applications from systems using legacy RTOSes.

 Who Should Attend?

Seasoned embedded systems developers wishing to become competent Linux
Embedded systems developers.

 Prerequisites

Delegates should have a working knowledge with C programming language and basic
knowledge with embedded systems

Course Contents

Introduction
 What is Linux
 Layers in a Linux system
 Linux vs. Legacy RTOS

Basic concepts

 Files and file system
 The shell
 Basic commands
 Processes
 Setting up networking

3

Application programming and the user space API

 Make files and the build environment
 Processes and threads
 Real time priorities

Application programming and the user space API
 Synchronization and IPC (mutex, condition variables, mailboxes, pipes, shared

memory, Unix domain sockets and signals)
 Timers
 Memory mapping and locking
 Debugging applications: in process and using remote debugger
 Labs – using pipes, debugging

Linux Kernel

 Kernel overview
 History
 Versions
 Source code layout
 Good practices
 System call interface

Writing a simple kernel module

 A simple kernel module structure
 Implicit steps of compiling modules in Linux kernel version 2.6
 Using shell commands to manipulate modules
 The kernel logs
 Using the printk function
 Passing parameters to the module

Memory Management

 Memory areas
 Memory page frames
 Requesting and releasing page frames
 Allocating contiguous virtual memory area
 The slab and slob allocators
 Memory caches and allocations
 Managing slabs
 Creating and destroying caches
 User space memory access

4

Implementing a character device file
 The VFS structure
 Initialization and termination
 Opening the device file
 IOCTL
 Implementing base operations

Debugging

 Kernel configuration for debugging
 printk
 KGDB
 Oops messages

Locking mechanisms

 Locking requirements
 Preemption
 Atomic bit operations
 Interrupt disabling
 Spin lock
 Semaphores

Linux Scheduler

 Process and thread
 Scheduling policies
 Priorities
 Kernel tasks
 task_struct structure
 SMP scheduling

Interrupt handling

 Hardware interrupt handling basics
 Interrupt handler and control
 Low level handling
 Wait queues technique
 Threaded interrupts

 Bottom halves

 Differing work
 Using software interrupts
 Tasklets
 Timers & RTC
 Work queues

5

Network sub system overview

 The layer model
 Registration and un-registration
 Socket buffers, allocations and manipulations
 Network headers
 Packet reception
 Packet transmission
 NAPI

6

Introduction
 What is Linux
 Layers in a Linux system
 Linux vs. Legacy RTOS

Basic concepts

